Готовых решений: 2 432 Предложить решение
Время на сайте: 22:09 | 08.12.2019
[ Обновленные темы · Новые сообщения · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Форум » Готовые задания (ГДЗ) » Физика » Решебники » Задачи по общей физике. Фотометрия и геометрическая оптика (Иродов И.Е.)
Задачи по общей физике. Фотометрия и геометрическая оптика
CreatorДата: Суббота, 06.01.2018, 19:09 | Сообщение # 1
Группа: Администраторы
Сообщений: 289
Репутация: 3
Статус: Оффлайн
Раздел находится в разработке. 
По всем вопросам обращаться по электронной почте (files@ftechedu.ru) или ВКонтакте.

4.1 Найти с помощью кривой относительной спектральной чувствительности глаза (см. рис. ): а) поток энергии, соответствующий световому потоку 1,0 лм и длиной волны 0,51 и 0,63 мкм; б) световой поток, приходящийся на интервал длин волн от 0,58 до 0,63 мкм, если соответствующий поток энергии Фэ = 4,5 мВт, причем последний распределен равномерно по всем длинам волн этого интервала. Считать, что в данном спектральном интервале функция V(L) линейная.
→ Перейти к решению

4.2 Точечный изотропный источник испускает световой поток Ф = 10 лм с длиной волны L = 0,60 мкм. Найти амплитудные значения напряженностей электрического и магнитного полей этого светового потока на расстоянии r = 1,0 м от источника. Воспользоваться рис. .
→ Перейти к решению

4.3 Найти световую энергию, которая падает на планету за период ее обращения вокруг Солнца (по вытянутому эллипсу), если световая мощность Солнца Р, площадь сечения планеты S и в момент, когда планета находится на минимальном расстоянии r0 от Солнца, ее скорость равна v0.
→ Перейти к решению

4.4 Определить среднюю освещенность облучаемой части непрозрачной сферы, если на нее падает: а) параллельный световой поток, создающий в точке нормального падения освещенность Е0; б) свет от точечного изотропного источника, находящегося на расстоянии l = 100 см от центра сферы; радиус сферы R = 60 см и сила света I = 36 кд.
→ Перейти к решению

4.5 Найти светимость поверхности, яркость которой зависит от направления как L = L0 cos ф, где ф — угол между направлением излучения и нормалью к поверхности.
→ Перейти к решению

4.6 Некоторая светящаяся поверхность подчиняется закону Ламберта. Ее яркость равна L. Найти: а) световой поток, излучаемый элементом dS этой поверхности внутрь конуса, ось которого нормальна к данному элементу, если угол полураствора конуса равен ф; б) светимость такого источника.
→ Перейти к решению

4.7 Над центром круглого стола радиуса R = 1,0 м подвешен небольшой светильник в виде плоского горизонтального диска площади S = 100 см2. Яркость светильника не зависит от направления и равна L = 1,6*10^4кд/м2. На какой высоте от поверхности стола надо поместить светильник, чтобы освещенность периферийных точек стола была максимальной? Какова будет эта освещенность?
→ Перейти к решению

4.8 На высоте h = 1,0 м над центром круглого стола радиуса R = 1,0 м подвешен точечный источник, сила света которого I так зависит от направления, что освещенность всех точек стола оказывается равномерной. Найти вид функции ДЭ), где $ — угол между направлением излучения и вертикалью, а также световой поток, падающий на стол, если I(0) = I0 = 100 кд.
→ Перейти к решению

4.9 Вертикальный луч проектора освещает центр потолка круглой комнаты радиуса R = 2,0 м. При этом на потолке образуется небольшой зайчик площадью S = 100 см2. Освещенность зайчика равна Е = 1000 лк. Коэффициент отражения потолка р = 0,80. Найти наибольшую освещенность стены, создаваемую светом, отраженным от потолка. Считать, что отражение происходит по закону Ламберта.
→ Перейти к решению

4.10 Равномерно светящийся купол, имеющий вид полусферы, опирается на горизонтальную поверхность. Определить освещенность в центре этой поверхности, если яркость купола равна L и не зависит от направления.
→ Перейти к решению

4.11 Ламбертовский источник имеет вид бесконечной плоскости. Его яркость равна L. Найти освещенность площадки, расположенной параллельно данному источнику.
→ Перейти к решению

4.12 Над столом находится светильник — плоский горизонтальный диск радиуса R = 25 см. Расстояние от него до поверхности стола h = 75 см. Освещенность стола под центром светильника Е0 = 70 лк. Найти светимость этого источника, считая его ламбертовским.
→ Перейти к решению

4.13 Небольшой светильник, имеющий вид равномерно светящейся сферы радиуса R = 6,0 см, находится на расстоянии h = 3,0 м от пола. Яркость светильника L = 2,0*10^4 кд/м2 и не зависит от направления. Найти освещенность пола непосредственно под светильником.
→ Перейти к решению

4.14 Записать в векторном виде закон отражения светового луча от зеркала — через направляющие орты е и е' падающего и отраженного лучей и орт n внешней нормали к поверхности зеркала.
→ Перейти к решению

4.15 Показать, что луч света, последовательно отразившийся от трех взаимно перпендикулярных плоских зеркал, изменит свое направление на прямо противоположное.
→ Перейти к решению

4.16 При каком значении угла падения ф1 луч, отраженный от поверхности воды, будет перпендикулярен преломленному лучу?
→ Перейти к решению

4.17 Имеются две оптические среды с плоской границей раздела. Пусть ф1пр — предельный угол падения луча, а ф1 — угол падения, при котором преломленный луч перпендикулярен отраженному (луч идет из оптически более плотной среды). Найти относительный показатель преломления этих сред, если sin фlnp /sin ф1 = h = l,28.
→ Перейти к решению

4.18 Луч света падает на плоскопараллельную стеклянную пластину толщины d = 6,0 см. Угол падения ф = 60°. Найти смещение луча, прошедшего через эту пластину.
→ Перейти к решению

4.19 На краю бассейна стоит человек и наблюдает камень, лежащий на дне. Глубина бассейна h. На каком расстоянии от поверхности воды видно изображение камня, если луч зрения составляет с нормалью к поверхности воды угол ф?
→ Перейти к решению

4.20 Показать, что в призме с малым преломляющим углом Q луч отклоняется на угол a = (n-1)Q независимо от угла падения, если последний также мал.
→ Перейти к решению

4.21 Луч света проходит через призму с преломляющим углом 0 и показателем преломления n. Пусть a — угол отклонения луча. Показать, что при симметричном ходе луча через призму: а) угол a минимален; б) связь между углами a и 0 определяется формулой (4.1д).
→ Перейти к решению

4.22 Для некоторой стеклянной призмы угол наименьшего отклонения луча равен преломляющему углу призмы. Найти последний.
→ Перейти к решению

4.23 Найти пределы, в которых может меняться угол отклонения луча при прохождении стеклянной призмы с преломляющим углом Q = 60°.
→ Перейти к решению

4.24 Трехгранная призма с преломляющим углом 60° дает угол наименьшего отклонения в воздухе 37°. Какой угол наименьшего отклонения даст эта призма в воде?
→ Перейти к решению

4.25 Луч света, содержащий две монохроматические составляющие, проходит через трехгранную призму с преломляющим углом Q = 60°. Определить угол Да между обеими составляющими луча после призмы, если показатели преломления для них равны 1,515 и 1,520 и призма ориентирована на угол наименьшего отклонения.
→ Перейти к решению

4.26 Вывести с помощью принципа Ферма законы отражения и преломления света на плоской границе раздела.
→ Перейти к решению

4.27 Открытый сверху сосуд, на дне которого находится точечный монохроматический источник света, заполняют снизу водой так, что ее уровень поднимается со скоростью v = 9,0 мм/с. Найти относительный сдвиг частоты dw/w света, который наблюдают над поверхностью воды вдоль вертикали, проходящей через источник. Наблюдатель предполагается неподвижным.
→ Перейти к решению

4.28 Найти построением ход луча после отражения в вогнутом и выпуклом сферических зеркалах (рис. и рис. , где F — фокус, OO' — оптическая ось).
→ Перейти к решению

4.29 Найти построением положение зеркала и его фокуса для случаев, показанных на рис. , где Р и Р' — сопряженные точки.
→ Перейти к решению

4.30 Определить фокусное расстояние вогнутого зеркала, если: а) при расстоянии между предметом и изображением l = 15 см поперечное увеличение b = -2,0; б) при одном положении предмета поперечное увеличение b1 = -0,50, а при другом положении, смещенном относительно первого на расстояние l = 5,0 см, поперечное увеличение b2 = -0,25.
→ Перейти к решению

4.31 Точечный источник, сила света которого I0 = 100 кд, помещен на расстоянии s = 20,0 см от вершины вогнутого зеркала с фокусным расстоянием f = 25,0 см. Определить силу света в отраженном пучке, если коэффициент отражения зеркала р = 0,80.
→ Перейти к решению

4.32 Вывести с помощью принципа Ферма формулу преломления параксиальных лучей на сферической поверхности радиуса R, разделяющей среды с показателями преломления n и n'.
→ Перейти к решению

4.33 Параллельный пучок света падает из вакуума на поверхность, которая ограничивает область с показателем преломления n (рис. ). Найти форму этой поверхности — уравнение x®, при которой пучок будет сфокусирован в точке F на расстоянии f от вершины О. Пучок какого максимального радиуса сечения может быть сфокусирован?
→ Перейти к решению

4.34 Луч света падает из воздуха на сферическую поверхность стекла (на рис. точками отмечены положения фокусов). Найти построением ход преломленного луча, считая лучи параксиальными.
→ Перейти к решению

4.35 Точечный источник расположен на расстоянии 20 см от передней поверхности стеклянной симметричной двояковыпуклой линзы. Толщина линзы 5,0 см, радиус кривизны поверхностей 5,0 см. На каком расстоянии от задней поверхности линзы образуется изображение источника?
→ Перейти к решению

4.36 Перед выпуклой поверхностью стеклянной выпукло-плоской линзы толщины d = 9,0 см находится предмет. Его изображение образуется на плоской поверхности линзы, которая служит экраном. Определить: а) поперечное увеличение, если радиус кривизны выпуклой поверхности линзы R = 2,5 см; б) освещенность изображения, если яркость предмета L = 7700 кд/м2 и диаметр входного отверстия данной линзы D = 5,0 мм; потерями света пренебречь.
→ Перейти к решению

4.37 Определить оптическую силу и фокусные расстояния тонкой стеклянной линзы в жидкости с показателем преломления n0 = 1,7, если ее оптическая сила в воздухе Ф0 = -5,0 дптр.
→ Перейти к решению

4.38 Вычислить оптическую силу и фокусные расстояния тонкой симметричной двояковыпуклой стеклянной линзы, с одной стороны которой находится воздух, а с другой — вода, если оптическая сила этой линзы в воздухе Ф0 = +10 дптр.
→ Перейти к решению

4.39 Найти построением ход луча за собирающей и рассеивающей тонкими линзами (рис. и 4.11, где ОО' — оптическая ось, F и F' — передний и задний фокусы).
→ Перейти к решению

4.40 Определить построением положение тонкой линзы и ее фокусов, если известно положение оптической оси ОО' и положение пары сопряженных точек Р и Р' (см. рис. и 4.7). Среды по обе стороны линз одинаковы.
→ Перейти к решению

4.41 Найти построением ход луча 2 за собирающей и рассеивающей тонкими линзами (рис. и 4.13), если известны положение линзы, ее оптической оси ОО' и ход луча 1. Среды по обе стороны линзы одинаковы.
→ Перейти к решению

4.42 Тонкая собирающая линза с фокусным расстоянием f = 25 см проецирует изображение предмета на экран, отстоящий от линзы на l = 5,0 м. Экран придвинули к линзе на dl = 75 см. На сколько сантиметров следует переместить предмет, чтобы опять получить четкое изображение его на экране?
→ Перейти к решению

4.43 Источник света находится на l = 90 см от экрана. Тонкая собирающая линза, помещенная между источником света и экраном, дает четкое изображение источника при двух ее положениях. Найти фокусное расстояние линзы, если: а) расстояние между обоими положениями dl = 30 см; б) поперечные размеры изображения при одном положении линзы в h = 4,0 раза больше, чем при другом.
→ Перейти к решению

4.44 Между предметом и экраном поместили тонкую собирающую линзу. Перемещением линзы нашли два положения, при которых на экране образуется четкое изображение предмета. Найти поперечный размер предмета, если при одном положении линзы размер изображения h' = 2,0 мм, а при другом h" = 4,5 мм.
→ Перейти к решению

4.45 Тонкая собирающая линза, у которой отношение ее диаметра к фокусному расстоянию D:f = 1:3,5, дает изображение удаленного предмета на фотопленке. Яркость предмета L = 260 кд/м2, потери света в линзе a = 0,10. Найти освещенность изображения.
→ Перейти к решению

4.46 Как зависит от диаметра D тонкой собирающей линзы яркость действительного изображения, если его рассматривать: а) непосредственно; б) на белом экране, рассеивающем по закону Ламберта?
→ Перейти к решению

4.47 Имеются две тонкие симметричные линзы: одна собирающая с показателем преломления n1 = 1,70, другая рассеивающая с n2 = 1,51. Обе линзы имеют одинаковый радиус кривизны поверхностей R = 10 см. Линзы сложили вплотную и погрузили в воду. Каково фокусное расстояние этой системы в воде?
→ Перейти к решению

4.48 Найти фокусное расстояние зеркала, представляющего собой тонкую симметричную двояковыпуклую стеклянную линзу с посеребренной одной поверхностью. Радиус кривизны поверхностей линзы R = 40 см.
→ Перейти к решению

4.49 Система, состоящая из трех тонких линз (рис. ), находится в воздухе. Оптическая сила каждой линзы 10,0 дптр. Определить: а) положение точки схождения параллельного пучка, падающего слева, после прохождения через систему; б) расстояние от первой линзы до точки на оси слева от системы, при котором эта точка и ее изображение будут расположены симметрично относительно системы.
→ Перейти к решению

4.50 Галилеева труба 10-кратного увеличения при установке на бесконечность имеет длину 45 см. Найти: а) фокусные расстояния объектива и окуляра трубы; б) на какое расстояние надо передвинуть окуляр трубы, чтобы ясно видеть предметы на расстоянии 50 м.
→ Перейти к решению

4.51 Найти увеличение зрительной трубы кеплеровского типа, установленной на бесконечность, если D — диаметр оправы ее объектива, a d — диаметр изображения этой оправы, образуемого окуляром трубы.
→ Перейти к решению

4.52 При прохождении светового потока через зрительную трубу его интенсивность увеличивается в h = 4,0*10^4 раз. Найти угловой размер удаленного предмета, если при наблюдении в эту трубу угловой размер его изображения ф' = 2,0°.
→ Перейти к решению

4.53 Зрительную трубу кеплеровского типа с увеличением Г = 15 погрузили в воду, которая заполнила и ее внутреннюю часть. Чтобы система при тех же размерах стала опять телескопической, объектив заменили другим. Каково стало после этого увеличение трубы в воде? Показатель преломления стекла окуляра n = 1,50.
→ Перейти к решению

4.54 При каком увеличении Г зрительной трубы с диаметром объектива D = 6,0 см освещенность изображения объекта на сетчатке глаза будет не меньше, чем в отсутствие трубы? Диаметр зрачка глаза считать равным d0 = 3,0 мм. Потерями света в трубе пренебречь.
→ Перейти к решению

4.55 Оптические силы объектива и окуляра микроскопа равны 100 и 20 дптр. Увеличение микроскопа равно 50. Каково будет увеличение этого микроскопа, если расстояние между объективом и окуляром увеличить на 2,0 см?
→ Перейти к решению

4.56 Микроскоп имеет числовую апертуру sin a = 0,12, где a — угол полураствора конуса лучей, падающих на оправу объектива. Полагая диаметр зрачка глаза d0 = 4,0 мм, определить увеличение микроскопа, при котором диаметр светового пучка, выходящего из микроскопа, равен диаметру зрачка глаза.
→ Перейти к решению

4.57 Исходя из условий предыдущей задачи, определить, при каком увеличении микроскопа освещенность изображения на сетчатке глаза не будет зависеть от увеличения. Считать, что световой пучок, проходящий через систему «микроскоп — глаз», ограничен оправой объектива.
→ Перейти к решению

4.58 Найти положение главных плоскостей, фокусов и узловых точек двояковыпуклой тонкой симметричной стеклянной линзы с радиусом кривизны поверхностей R = 7,50 см, если с одной стороны ее находится воздух, а с другой — вода.
→ Перейти к решению

4.59 Найти с помощью построения положение фокусов и главных плоскостей центрированных оптических систем, показанных на рис. : а) телеобъектив — система из собирающей и рассеивающей тонких линз (f1 = 1,5d, f2 = -1,5d); б) система из двух собирающих тонких линз (f1 = 1,5d, f2 = 0,5d); в) толстая выпукло-вогнутая линза (d = 4 см, n = 1,5, Ф1 = +50 дптр, Ф2 = -50 дптр).
→ Перейти к решению

4.60 Оптическая система находится в воздухе. Пусть ОО' — ее оптическая ось, F и F' — передний и задний фокусы, Н и Н' — передняя и задняя главные плоскости, Р и Р' — сопряженные точки. Найти построением: а) положение F' и Н' (рис. , a); б) положение точки S', сопряженной с точкой S (рис. , б); в) положение F, F' и Н' (рис. , в, где показан ход луча до и после прохождения системы).
→ Перейти к решению

4.61 Пусть F, F' — передний и задний фокусы оптической системы, Н и Н' — ее передняя и задняя главные точки. Найти построением положение изображения S' точки S для следующих относительных расположений точек S, F, F', Н, Н': a) FSHH'F'; б) HSF'FH'; в) H'SF'FH; г) F'H'SHF.
→ Перейти к решению

4.62 Телеобъектив состоит из двух тонких линз — передней собирающей и задней рассеивающей с оптическими силами Ф1 = +10дптр и Ф2 = -10дптр. Найти: а) фокусное расстояние и положение главных плоскостей этой системы, если расстояние между линзами d = 4,0 см; б) расстояние d между линзами, при котором отношение фокусного расстояния f системы к расстоянию l между собирающей линзой и задним главным фокусом будет максимальным. Чему равно это отношение?
→ Перейти к решению

4.63 Рассчитать положение главных плоскостей и фокусов толстой выпукло-вогнутой стеклянной линзы, если радиус кривизны выпуклой поверхности R1 = 10,0 см, вогнутой R2 = 5,0 см и толщина линзы d = 3,0 см.
→ Перейти к решению

4.64 Центрированная оптическая система состоит из двух тонких линз с фокусными расстояниями f1 и f2, причем расстояние между линзами равно d. Данную систему требуется заменить одной тонкой линзой, которая при любом положении объекта давала бы такое же поперечное увеличение, как и предыдущая система. Каким должно быть фокусное расстояние этой линзы и ее положение относительно системы из двух линз?
→ Перейти к решению

4.65 Система состоит из собирающей тонкой симметричной стеклянной линзы с радиусом кривизны поверхностей R = 38 см и плоского зеркала, расположенного перпендикулярно оптической оси линзы. Расстояние между линзой и зеркалом l = 12 см. Какова будет оптическая сила этой системы, если пространство между линзой и зеркалом заполнить водой?
→ Перейти к решению

4.66 При какой толщине выпукло-вогнутая толстая стеклянная линза в воздухе будет: а) телескопической, если радиус кривизны ее выпуклой поверхности больше, чем радиус кривизны вогнутой поверхности, на dR = 1,5 см; б) иметь оптическую силу, равную -1,0 дптр, если радиусы кривизны ее выпуклой и вогнутой поверхностей равны соответственно 10,0 и 7,5 см?
→ Перейти к решению

4.67 Найти положение главных плоскостей, фокусное расстояние и знак оптической силы выпукло-вогнутой толстой стеклянной линзы, у которой: а) толщина равна d, а радиусы кривизны поверхностей одинаковы и равны R; б) преломляющие поверхности концентрические с радиусами кривизны R1 и R2 (R2 > R1).
→ Перейти к решению

4.68 Телескопическая система образована из двух стеклянных шаров, радиусы которых R1 = 5,0 см и R2 = 1,0 см. Каковы расстояние между центрами этих шаров и увеличение системы, если объективом является больший шар?
→ Перейти к решению

4.69 При распространении света в изотропной среде с медленно изменяющимся от точки к точке показателем преломления n радиус кривизны R луча определяется формулой 1/R = d(ln n)/dN, где производная берется по направлению главной нормали к лучу. Получить эту формулу, имея в виду, что в такой среде справедлив закон преломления n sin ф = const, где ф — угол между лучом и направлением grad n в данной точке.
→ Перейти к решению

4.70 Найти радиус кривизны светового луча, распространяющегося вдоль поверхности Земли, где градиент показателя преломления воздуха dn/dN = 3*10^-8 м-1 (см. предыдущую задачу). При каком значении этого градиента луч света распространялся бы по окружности вокруг Земли?
→ Перейти к решению
 
Форум » Готовые задания (ГДЗ) » Физика » Решебники » Задачи по общей физике. Фотометрия и геометрическая оптика (Иродов И.Е.)
  • Страница 1 из 1
  • 1
Поиск:

Реклама

Опрос

Какие предметы интересуют вас больше всего?
Всего ответов: 682