[ Обновленные темы · Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Форум » СПбГЭТУ (ЛЭТИ) » Физика » Задачи » 3 семестр (ИДЗ №3) (за 2015 год)
3 семестр (ИДЗ №3)
CreatorДата: Четверг, 19.11.2015, 17:26 | Сообщение # 1
Группа: Администраторы
Сообщений: 289
Репутация: 6
Статус: Оффлайн
В данной теме вы сможете найти решение к задачам из ИДЗ №3.
Перейти к решению задачи вы можете нажав на ссылку под ее условием.
Материал скоро будет готов

1. Плоская световая волна (= 0,5 мкм) падает нормально на диафрагму с круглым отверстием диаметром d = 1 см. На каком расстоянии b от отверстия должна находиться точка наблюдения, чтобы отверстие открывало: 1) одну зону Френеля? 2) две зоны Френеля?
→ Перейти к решению

2. Точечный источник света с длиной волны 0,50 мкм расположен на расстоянии a = 100 см перед диафрагмой с круглым отверстием радиуса r = 1,0 мм. Найти расстояние b от диафрагмы до точки наблюдения, для которой число зон Френеля в отверстии составляет k = 3.
Перейти к решению

3. Между точечным источником света и экраном поместили диафрагму с круглым отверстием, радиус r которого можно менять. Расстояния от диафрагмы до источника и экрана равны a = 100 см и b = 125 см. Определить длину волны света, если максимум освещённости в центре дифракционной картины наблюдается при r1 = 1,00 мм и следующий максимум при r2 = 1,29 мм.
→ Перейти к решению

4. Вычислить радиус r шестой зоны Френеля для плоской монохроматической волны (= 546 нм), если точка наблюдения находится на расстоянии b = 4,4 м от фронта волны.
Перейти к решению

5. Вычислить радиус r центральной зоны Френеля на фронте волны, отстоящем на расстоянии a = 1 м от точечного источника монохроматического света (550 нм), если точка наблюдения находится на расстоянии b = 5 м от фронта волны.
Перейти к решению

6. На диафрагму с круглым отверстием диаметром d = 4 мм падает нормально параллельный пучок лучей монохроматического света (500 нм). Точка наблюдения находится на оси отверстия на расстоянии b = 1 м от него. Сколько k зон Френеля укладывается в отверстии? Тёмное или светлое пятно получится в центре дифракционной картины, если в месте наблюдения поместить экран?
Перейти к решению

7. Плоская световая волна (0,64 мкм) с интенсивностью I0 падает нормально на круглое отверстие радиуса r = 1,20 мм. Найти интенсивность I в центре дифракционной картины на экране, отстоящем на расстоянии b = 150 см от отверстия.
Перейти к решению

8. Плоская световая волна с интенсивностью I0 падает нормально на непрозрачный экран с круглым отверстием. Какова интенсивность I света за экраном в точке, для которой отверстие: 1) равно первой зоне Френеля; 2) внутренней половине первой зоны?
→ Перейти к решению

9. Дифракционная картина наблюдается на расстоянии l = 4 м от точечного источника монохроматического света (500 нм). Посередине между экраном и источником помещена диафрагма с круглым отверстием. При каком радиусе отверстия r центр дифракционных колец, наблюдаемых на экране, будет наиболее тёмным?
Перейти к решению

10. На диафрагму с круглым отверстием падает нормально параллельный пучок монохроматического света (= 600 нм). На экране наблюдается дифракционная картина. При каком расстоянии b между диафрагмой и экраном в центре дифракционной картины будет наблюдаться наиболее тёмное пятно? Диаметр отверстия d = 1,96 мм.
→ Перейти к решению

11. Параллельный пучок монохроматического света с длиной волны = 600 нм нор- мально падает на непрозрачный экран с круглым отверстием диметром d = 1,2 мм. На расстоянии b1 = 15 см за экраном на оси отверстия наблюдается тёмное пятно. На какое минимальное расстояние b нужно сместиться от этой точки вдоль оси отвер- стия, удаляясь от него, чтобы в центре дифракционной картины вновь наблюдалось тёмное пятно?
→ Перейти к решению

12. В точке А (рис.1) находится точечный источник монохроматического света (= 500 нм). Диа- фрагма D c отверстием радиусом r = 1 мм пере-
мещается из точки, отстоящей от А на расстоя- A B нии l1 = 1 м, в точку, отстоящую от А на рас- стоянии l2 = 1,75 м. Сколько k раз будет наблю- даться затемнение в точке В, если АВ = 2 м?
D Рис. 1
→ Перейти к решению

13. В точке А (рис.1) находится точечный источник монохроматического света (= 500 нм). Диафрагма D c отверстием радиусом r = 1 мм перемещается из точки, отстоящей от А на расстоянии l1 = 50 см, в точку, отстоящую от А на расстоянии l2 = 150 см. Сколько k раз будет наблюдаться затемнение в точке В, если АВ = 2 м?
→ Перейти к решению

14. Вычислить радиус m-й зоны Френеля, если расстояние от источника до зонной пластинки равно a, а расстояние от пластинки до места наблюдения равно b. Длина волны λ. Найти радиус r1 первой зоны, если a= b=10 м, λ=450 нм.
Перейти к решению

15. Зонная пластинка даёт изображение источника, удалённого от неё на 3 м, на расстоянии 2 м от своей поверхности. Где получится изображение источника, если его отодвинуть в бесконечность?
→ Перейти к решению

16. 1) Вычислить радиус m-й зоны Френеля при условии, что на зонную пластинку па- дает плоская волна. 2) Найти радиус r1 первой зоны, если расстояние от пластинки до места наблюдения равно b = 10 м, = 450 нм.
→ Перейти к решению

17. Точечный источник монохроматического света расположен перед зонной пластинкой на расстоянии a = 1,5 м от неё. Изображение источника образуется на расстоянии b = 1,0 м от пластинки. Найти фокусное расстояние F зонной пластинки.
→ Перейти к решению

18. Определить фокусное расстояние F зонной пластинки для света с = 500 нм, если радиус r5 пятого кольца этой пластинки равен 1,5 мм; определить радиус r1 первого кольца этой пластинки.
→ Перейти к решению

19. На щель шириной a = 10 мкм нормально падает пучок монохроматического света (= 577 нм). Под какими углами k к первоначальному направлению наблюдаются максимумы первого, второго и третьего порядков?
→ Перейти к решению

20. Нормально к плоскости щели падает параллельный пучок монохроматического света с длиной волны = 546 нм. Вычислить ширину a щели, если первая светлая полоса, считая от центральной светлой области дифракционной картины, наблюдается под углом = 2○ к первоначальному направлению лучей.
→ Перейти к решению

21. На узкую щель падает нормально монохроматический свет. Угол отклонения пучков света, соответствующих второй светлой дифракционной полосе, равен 1○. Скольким длинам волн падающего света равна ширина щели?
→ Перейти к решению

22. Свет с длиной волны λ = 0,50 мкм падает на щель ширины a = 10 мкм под углом θ = 30○ к её нормали. Найти угловое положение первых минимумов, расположенных по обе стороны центрального максимума.
Перейти к решению

23. На щель шириной a = 0,05 мм падает нормально монохроматический свет (0,6 мкм). Определить угол между первоначальным направлением пучка света и направлением на четвёртую тёмную дифракционную полосу.
Перейти к решению

24. На щель шириной a = 2 мкм нормально падает пучок монохроматического света с длиной волны 589 нм. Найти углы k, в направлении которых будут наблюдаться минимумы света.
Перейти к решению

25. На щель шириной a = 20 мкм нормально падает пучок монохроматического света с длиной волны 500 нм. Найти ширину изображения щели на экране, удалённом от щели на l = 1 м. Шириной изображения считать расстояние между первыми дифракционными минимумами, расположенными по обе стороны от главного максимума освещённости.
Перейти к решению

26. На щель шириной a = 0,1 мм падает нормально монохроматический свет (= 0,5 мкм). За щелью помещена собирающая линза, в фокальной плоскости которой находится экран. Что будет наблюдаться на экране при угле дифракции равном: 1) 17; 2) 43?
→ Перейти к решению

27. Параллельный пучок монохроматического света с длиной волны = 400 нм падает нормально на щель шириной a = 20 мкм. За щелью помещена собирающая линза с фокусным расстоянием F = 50 см, с помощью которой можно наблюдать дифракционные полосы на экране. Определить расстояние x между светлыми полосами первого и второго порядков.
Перейти к решению

28. Плоская световая волна с λ = 0,60 мкм падает нормально на грань стеклянного (n = 1,50) клина с преломляющим углом θ = 15○. На противоположной, непрозрачной, грани имеется щель ширины a = 10 мкм, параллельная ребру клина. Найти угловую ширину максимума нулевого порядка.
→ Перейти к решению

29. На узкую щель падает нормально пучок параллельных лучей (490 нм). Дифракционная картина, даваемая щелью, наблюдается на экране с помощью линзы с фокусным расстоянием F = 40 см. Определить ширину a щели, если расстояние между серединами полос спектров первого и второго порядка на экране равно 7 мм.
Перейти к решению

30. На плоскую дифракционную решётку параллельным пучком падает свет с 400 нм. Определить углы, под которыми наблюдаются максимумы 1-го, 2-го и 3-го порядков. Решётка имеет n = 500 штрихов на 1 мм. Лучи падают нормально к плоскости решётки.
→ Перейти к решению

31. Свет от ртутной лампы падает нормально на плоскую дифракционную решётку, ширина которой L = 5 см. Общее число штрихов N = 10000. Определить угол между фиолетовыми (0,405 мкм) и жёлтыми (0,577 мкм) лучами в спектре первого порядка.
Перейти к решению

32. Дифракционная решётка содержит n = 200 штрихов на 1 мм. На решётку падает нормально монохроматический свет (0,6 мкм). Какого наибольшего порядка максимум даёт эта решётка?
Перейти к решению

33. На дифракционную решётку, содержащую n = 100 штрихов на 1 мм, падает нормально монохроматический свет ( 0,6 мкм). Найти общее число дифракционных максимумов, которые даёт эта решётка? Определить угол дифракции, соответствующий максимуму наибольшего порядка.
Перейти к решению

34. Постоянная дифракционной решётки d = 2 мкм. Под какими углами m следует установить зрительную трубу для наблюдения спектральной линии с = 0,41 мкм?
→ Перейти к решению

35. На дифракционную решётку нормально падает пучок света от разрядной трубки. Чему должна быть равна постоянная d дифракционной решётки, чтобы в направлении = 41○ совпадали максимумы двух линий: 1 = 656,3 нм и 2 = 410,2 нм.
→ Перейти к решению

36. На плоскую дифракционную решётку с постоянной d = 5 мкм нормально падает пучок монохроматического света. Угол между направлениями лучей, дающих максимум 1-го порядка справа и слева от центральной полосы дифракционной картины, равен 13○48. Определить длину волны падающего света.
Перейти к решению

37. Сколько штрихов на каждый миллиметр содержит дифракционная решётка, если при наблюдении в монохроматическом свете (0,6 мкм) максимум пятого порядка отклонён на угол 18?
Перейти к решению

38. На дифракционную решётку, содержащую n = 100 штрихов на 1 мм, падает нормально монохроматический свет. Зрительная труба спектрометра наведена на максимум третьего порядка. Чтобы навести трубу на другой максимум того же порядка, её нужно повернуть на угол = 20○. Определить длину волны света.
→ Перейти к решению

39. На дифракционную решётку нормально падает пучок света. При повороте гониометра на некоторый угол в поле зрения видна линия 0,44 мкм в спектре третьего порядка. Будут ли видны под этим же углом какие-либо другие линии,соответствующие длинам волн, лежащим в пределах видимого света (0,4%0,7мкм)?
Перейти к решению

40. Дифракционная решётка, имеющая n = 200 штрихов на 1 мм, помещена на столике гониометра. Перед щелью коллиматора находится разрядная трубка с криптоном. Пучок света, выходящий из коллиматора, падает на решётку перпендикулярно её плоскости. Под каким углом к падающему на решётку пучку надо поставить зри- тельную трубу, чтобы в поле зрения совпали линии криптона с длинами волн
1 = 556,01 нм и 2 = 403,78 нм? В каких порядках спектра может произойти такое совпадение?
→ Перейти к решению

41. В спектрографе установлена дифракционная решётка, имеющая n = 500 штрихов на 1 мм. Определить, на каком расстоянии друг от друга получатся на фотоплёнке спектральные линии водорода с длинами волн 434 нм и 410 нм в спектре первого порядка, если фокусное расстояние F линзы камеры спектрографа равно 10 см. Решётка установлена перпендикулярно пучку лучей, выходящих из коллиматора.
Перейти к решению

42. На плоскую дифракционную решётку, постоянная которой d = 4 мкм, нормально падает пучок белого света. Определить протяжённость видимого участка спектра 1-го порядка, спроектированного на экран линзой с фокусным расстоянием F = 50 см. Длины волн границ видимого света можно принять равными 380 нм (фиолетовая) и 760 нм (красная).
Перейти к решению

43. Спектр излучения водородной трубки получен с помощью плоской дифракционной решётки (постоянная решётки d = 4 мкм) и линзы с фокусным расстоянием F = 40 см. Вычислить, на каком расстоянии друг от друга получатся спектральные линии водорода с длинами волн 656 нм и 486 нм в спектре третьего порядка. Излучение водородной трубки падает параллельным пучком нормально к плоскости решётки. Фокус линзы, проектирующей спектр, попадает на центральную полосу дифракционной картины.
Перейти к решению

44. Спектрограмма получена с помощью плоской дифракционной решётки и камеры с фокусным расстоянием объектива F = 50 см. Расстояние x между спектральными линиями калия с длинами волн 693,9 нм и 691,2 нм в спектре 3-го порядка оказалось равным 2 мм. Определить угол дифракции для красных лучей в 3-м порядке и постоянную решётки d.
Перейти к решению

45. С помощью дифракционной решетки с периодом d=20 мкм требуется разрешить дублет натрия (λ1=589,0 нм и λ2=589,6 нм) в спектре второго порядка. При какой наименьшей длине l решетки это возможно?
Перейти к решению

46. Каково должно быть наименьшее число N штрихов дифракционной решётки, чтобы она могла разрешить в 1-м порядке две спектральные линии с длинами волн 475,2 нм и 474,8 нм?
Перейти к решению

47. Какой наименьшей разрешающей силой R должна обладать дифракционная решетка, чтобы с ее помощью можно было разрешить две спектральные линии калия (λ1=578 нм и λ2=580 нм)? Какое наименьшее число N штрихов должна иметь эта решетка, чтобы разрешение было возможно в спектре второго порядка?
Перейти к решению

48. Чему равна постоянная d дифракционной решётки, если эта решётка может разрешить в первом порядке линии спектра калия 404,4 нм и 404,7 нм? Ширина решётки l = 3 см.
Перейти к решению

49. Постоянная d дифракционной решётки шириной l = 2,5 см равна 2 мкм. Какую разность длин волн может разрешить эта решётка в области жёлтых лучей (0,6 мкм) в спектре второго порядка?
→ Перейти к решению

50. Свет, содержащий две спектральные линии с длинами волн λ1 = 600,000 нм и λ2 = 600,050 нм, падает нормально на дифракционную решётку ширины l = 10,0 мм. Под некоторым углом дифракции θ эти линии оказались на пределе разрешения (по критерию Рэлея). Найти θ.
→ Перейти к решению

51. Дифракционная картина получена с помощью дифракционной решетки длиной l=1,5 см и периодом d=5 мкм. Определить, в спектре какого наименьшего порядка этой картины получатся раздельные изображения двух спектральных линий с разностью длин волн Δλ=0,1 нм, если линии лежат в крайней красной части спектра (λ≈760 нм).
Перейти к решению

52. Дифракционная решётка кварцевого спектрографа имеет ширину l = 25 мм и со- держит n = 250 штрихов на 1 мм. Фокусное расстояние F объектива, в фокальной плоскости которого находится фотопластинка, равно 80 см. Свет падает на решётку нормально. Исследуемый спектр содержит спектральную линию, компоненты дуб- лета которой имеют длины волн 1 = 310,154 нм и 2 = 310,184 нм. Определить: 1) расстояния x1,2 на фотопластинке между компонентами этого дублета в спектрах первого и второго порядков; 2) будут ли они разрешены в этих порядках спектра.
→ Перейти к решению

53. Свет с λ = 589,0 нм падает нормально на дифракционную решетку с периодом d = 2,5 мкм, содержащую N = 10000 штрихов. Найти угловую ширину дифракционного максимума второго порядка.
Перейти к решению

54. Определить разрешающую силу R дифракционной решётки шириной l = 2 см в спектре 3-го порядка, если постоянная решётки d = 5 мкм. Какова наименьшая разность длин волн для двух разрешаемых спектральных линий в жёлтой области спектра (600 нм)?
Перейти к решению

55. Свет падает нормально на дифракционную решётку ширины l = 6,5 см, имеющую
n = 200 штрихов на 1 мм. Исследуемый спектр содержит спектральную линию с
= 670,8 нм, которая состоит из двух компонент, отличающихся на = 0,015 нм. Найти: 1) в каком порядке m спектра эти компоненты будут разрешены; 2) наименьшую разность , которую может разрешить эта решётка в области 670 нм.
→ Перейти к решению

56. При нормальном падении света на прозрачную дифракционную решетку ширины 10 мм обнаружено, что компоненты желтой линии натрия (589,0 и 589,6 нм) оказываются разрешенными, начиная с пятого порядка спектра. Оценить: а) период этой решетки; б) при какой ширине решетки с таким же периодом можно разрешить в третьем порядке дублет спектральной линии с λ = 460,0 нм, компоненты которого отличаются на 0,13 нм.
Перейти к решению

57. Найти угловую дисперсию решётки с постоянной d = 5 мкм, если λ = 500 нм, порядок спектра m = 3.
Перейти к решению

58. Прозрачная дифракционная решётка имеет период d = 1,50 мкм. Найти угловую дисперсию D(в угл. мин/нм), соответствующую максимуму наибольшего порядка m спектральной линии с = 530 нм, если свет падает на решётку: 1) нормально;
2) под углом 0 = 45○ к нормали.
→ Перейти к решению

59. Дифракционная решётка шириной l = 1 см имеет n = 200 штрихов на 1 мм. Когда решётка была применена для получения спектра, оказалось, что угол дифракции , соответствующий некоторой спектральной линии в 1-м порядке, равен 9○. Вычислить: 1) длину волны спектральной линии; 2) наибольшее значение разрешающей способности R дифракционной решётки для этой длины волны; 3) наибольшее значение угловой дисперсии Dдифракционной решётки для той же длины волны.
→ Перейти к решению

60. На дифракционную решётку нормально падает пучок света. Красная линия (= 630 нм) видна в спектре третьего порядка под углом = 60○. 1) Какая спек- тральная линия видна под этим же углом в спектре четвёртого порядка? 2) Какое число n штрихов на 1 мм длины имеет дифракционная решётка? 3) Чему равна угловая дисперсия Dдифракционной решётки для линии = 630 нм в спектре третьего порядка?
→ Перейти к решению

61. На дифракционную решетку с периодом d=10 мкм под углом α=30° падает монохроматический свет с длиной волны λ=600 нм. Определить угол φ дифракции, соответствующий второму главному максимуму.
Перейти к решению

62. Пучок рентгеновских лучей падает на решетку с периодом 1 мкм под углом 89°30 . Угол дифракции для спектра второго порядка равен 89°. Найти l.
Перейти к решению

63. 1) Подсчитать угловую дисперсию Dв угл. с/нм в спектре первого порядка для решётки, имеющей n = 3937 штрихов на 1 см. 2) Подсчитать линейную дисперсию Dl в мм/нм спектрографа с такой решёткой при объективе с фокусным расстоянием F =50 см. При расчёте считать, что углы дифракции малы (cos
→ Перейти к решению

64. Определить угловую дисперсию Dφ дифракционной решетки для угла дифракции φ=30° и длины волны λ=600 нм. Ответ выразить в единицах СИ и в минутах на нанометр.​
Перейти к решению

65. На дифракционную решётку, содержащую n = 500 штрихов на 1 мм, падает нормально монохроматический свет с длиной волны λ=700 нм. За решёткой помещена собирающая линза с главным фокусным расстоянием F = 50 см. В фокальной плоскости линзы расположен экран. Определить линейную дисперсию Dl такой системы для максимума третьего порядка. Ответ выразить в миллиметрах на нанометр.
Перейти к решению

66. Нормально поверхности дифракционной решётки падает пучок света. За решёткой помещена собирающая линза с фокусным расстоянием F = 1 м. В фокальной плоскости линзы расположен экран. Определить число n штрихов на 1 мм этой решётки, если при малых углах дифракции линейная дисперсия Dl = 1 мм/нм.
Перейти к решению

67. Параллельный пучок рентгеновского излучения падает на грань кристалла. Под углом = 65○ к плоскости грани наблюдается максимум первого порядка. Расстояние d между атомными плоскостями равно 280 пм. Определить длину волны рентгеновского излучения.
→ Перейти к решению

68. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения (= 147 пм). Определить расстояние d между атомными плоскостями кристалла, если дифракционный максимум второго порядка наблюдается, когда излучение падает под углом = 31○30к поверхности кристалла.
→ Перейти к решению

69. На кристалл, в котором расстояние d между атомными плоскостями равно 0,304 нм, падают рентгеновские лучи с длиной волны = 0,154 нм. При каком угле скольжения будет наблюдаться дифракционный максимум первого порядка?
→ Перейти к решению

70. Для какой длины волны дифракционная решетка имеет угловую дисперсию 6,3*105 рад/м в спектре третьего порядка? Постоянная решетки 5 мкм.
→ Перейти к решению
 
Форум » СПбГЭТУ (ЛЭТИ) » Физика » Задачи » 3 семестр (ИДЗ №3) (за 2015 год)
  • Страница 1 из 1
  • 1
Поиск: